Image Super-Resolution Reconstruction Based On Multi-Dictionary Learning
نویسنده
چکیده
In order to overcome the problems that the single dictionary cannot be adapted to variety types of images and the reconstruction quality couldn’t meet the application, we propose a novel Multi-Dictionary Learning algorithm for feature classification. The algorithm uses the orientation information of the low resolution image to guide the image patches in the database to classify, and designs the classification dictionary which can effectively express the reconstructed image patches. Considering the nonlocal similarity of the image, we construct the combined nonlocal mean value(C-NLM) regularizer, and take the steering kernel regression(SKR) to formulate a local regularization ,and establish a unified reconstruction framework. Extensive experiments on single image validate that the proposed method, compared with several other state-of-the-art learning based algorithms, achieves improvement in image quality and provides more details.
منابع مشابه
Image Super-Resolution Reconstruction based on Multi-Groups of Coupled Dictionary and Alternative Learning
A novel image super-resolution reconstruction framework based on multi-groups of coupled dictionary and alternative learning is investigated in this paper. In dictionary learning phase, each image of a training image set is taken as high resolution image (HRI), the reduced and re-enlarged result of HRI by interpolation is taken as low resolution image (LRI), and the difference between them is r...
متن کاملImage Super Resolution Reconstruction Based MCA and PCA Dimension Reduction
Image super-resolution (SR) reconstruction is to reconstruct a high-resolution (HR) image from one or a series of low-resolution (LR) images in the same scene with a certain amount of prior knowledge. Learning based algorithm is an effective one in image super-resolution reconstruction algorithm. The core idea of the algorithm is to use the training examples of image to increase the high freque...
متن کاملMulti-frame Image Super-resolution Reconstruction based on Sparse Representation and POCS
Super-resolution image reconstruction algorithms produce a high-resolution image from one or a set of low-resolution images of the desired scene. In this paper, we present a novel two-stage super-resolution (SR) algorithm combined sparse signal representation with the projection onto convex sets (POCS). In the first stage, inspired by recent results in sparse signal representation, we get a hig...
متن کاملJoint Dictionary Learning for Example-based Image Super-resolution
In this paper, we propose a new joint dictionary learning method for example-based image super-resolution (SR), using sparse representation. The low-resolution (LR) dictionary is trained from a set of LR sample image patches. Using the sparse representation coefficients of these LR patches over the LR dictionary, the high-resolution (HR) dictionary is trained by minimizing the reconstruction er...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کامل